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tigated, and the relationship between the character of the collection and the distribution of the scattered spectral
density is discussed. It is shown that both the number of particles and their locations in the collection play roles in
the distribution of the far-zone scattered spectral density. This phenomenon may provide a potential method to
reconstruct the structure character of a collection of particles from measurements of the far-zone scattered
spectral density.
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The far-zone property of light waves on scattering from a
medium is a topic of considerable importance due to its
potential applications in areas such as remote sensing,
detecting, and medical diagnosis. During the past two
decades, a lot of papers that discussed the relationship
between the character of a scattering medium and the
property of the far-zone scattered field were published.
For example, the spectrum of polychromatic light waves
on scattering both from a continual medium[1,2] and from a
collection of particles[3] was discussed, and a condition for
the isotropy of the far-zone scattered spectrum was pre-
sented by Wolf[4]. The spectral coherence of a light wave
on scattering from a quasi-homogenous medium was
discussed by Visser et al., and a reciprocity relation
between the correlation function of the scattering medium
and the property of the scattered field was studied[5]. The
far-zone scattered field of light waves on scattering
from anisotropic particles and ellipsoid particles was
discussed by Du[6] and Mei et al.[7], respectively. Recently,
the scattering of light waves with different density distri-
butions and different correlation functions was also
discussed, and it is shown that the property of the incident
light wave is also a critical factor that affects the far-zone
scattered field[8–12].
In any discussion of light wave scattering, the inverse

problem, i.e., the determination of the characteristics of
a scatterer from measurements of the far-zone scattered
field, is always a highlight[13,14]. In 2007, Zhao and his
collaborators presented a method to reconstruct the
correlation function of a homogeneous medium from the
measurement of the far-zone scattered spectral density[15].
Soon afterwards, this method was generalized to recon-
struct the correlation function of a quasi-homogeneous
medium[16]. In practice, the scatterer one encounters is
not always a continuous medium, but a collection of

particles. In this case, one should determine the number,
the type, and the location of each particle in the collection
to reconstruct the structure of the collection. In this manu-
script, the relationship between the characteristics of a
collection of particles and the distribution of the far-zone
scattered spectral density will be discussed. It will be
shown that the far-zone scattered spectral density is
closely related to the number of particles and their loca-
tions in the collection. This phenomenon may have
potential application in the reconstruction of the structure
of a collection of particles.

Assuming that a spatially coherent polychromatic plane
light wave with a propagation direction specified by a unit
vector s0 is incident on a scattering medium, the cross-
spectral density function of the incident field at a pair
of points specified by position vectors (r01, r02) within
the domain of the scattering medium can be defined as[17]

W ðiÞðr01; r02; s0;ωÞ ¼ hU ðiÞ�ðr01;ωÞU ðiÞðr02;ωÞi; (1)

where the asterisk denotes the complex conjugate and the
angular bracket denote the ensemble average. fU ðiÞðr0;ωÞg
is a statistical ensemble of a random function, which takes
the following form:

U ðiÞðr0;ωÞ ¼ aðωÞ expðiks0·r0Þ; (2)

where aðωÞ is a random function and k ¼ ω∕c, with c
being the speed of light in a vacuum. Upon substituting
the values from Eq. (2) into Eq. (1), one can rewrite
the cross-spectral density function of the incident
field as

W ðiÞðr01; r02; s0;ωÞ ¼ S ðiÞðωÞ exp½iks0·ðr02 − r01Þ�; (3)
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where

S ðiÞðωÞ ¼ ha�ðωÞaðωÞi (4)

represents the spectrum of the incident field.
Let us assume that the scattering medium is composed

of a collection of particles. In the case that all of the par-
ticles and their locations in the collection are determinis-
tic, then the scattering potential Fðr0;ωÞ of the whole
collection is a well-defined function of the position r0. If
all of the particles in the collection are the same and
located at points denoted by position vectors r01; r

0
2;…r

0
n,

the scattering potential of the whole collection then can
be defined as[18]

Fðr0;ωÞ ¼
X
n

f ðr0 − r0n;ωÞ; (5)

where n is the number of particles and f ðr0;ωÞ is the
scattering potential of each particle.
Assuming that the scatter is weak so that the scattering

can be analyzed within the accuracy of the first-order Born
approximation[19]. Then, the cross-spectral density func-
tion of the far-zone scattered field, at two positions
specified by a pair of position vectors rs1 and rs2 can
be expressed as[18]

W ðsÞðrs1;rs2;s0;ωÞ¼
S ðiÞðωÞ
r2

~F�½kðs1−s0Þ;ω� ~F ½kðs2−s0Þ;ω�;
(6)

where

~FðK;ωÞ ¼
Z
D
Fðr0;ωÞ expð−iK·r0Þd3r 0 (7)

is the three-dimensional Fourier transform of the scatter-
ing potential with

K ¼ kðs− s0Þ: (8)

The far-zone scattered spectral density can be obtained
from the cross-spectral density function by letting the two
position vectors rs1 and rs2 coincide, i.e.,

SðsÞðrs; s0;ωÞ ≡W ðsÞðrs; rs; s0;ωÞ

¼ S ðiÞðωÞ
r2

~F�½kðs− s0Þ;ω� ~F ½kðs− s0Þ;ω�: (9)

As an example, let us assume that the scattering poten-
tial of each particle in the collection has a distribution of
the Gaussian function[20], i.e.,

f ðr0;ωÞ ¼ A exp
�
−

r02

2σ2

�
; (10)

where A is a constant, and σ, which is dependent on the
frequency, is the effective width of the scattering potential
of each particle. Upon substituting the values from
Eq. (10) into Eq. (5), one can readily find the scattering
potential of the whole collection, using the following
formula:

Fðr0;ωÞ ¼ A
X
n

exp
�
−
ðr0 − r0nÞ2

2σ2

�
: (11)

Upon substituting the values from Eq. (11) into Eq. (7),
and manipulating the six-dimensional Fourier transform,
one can obtain

~FðK;ωÞ ¼ Að2πÞ3∕2σ3 exp
�
−
1
2
σ2K2

�X
n

exp½−iK·r0n�:

(12)

Upon substituting the values from Eq. (12) into Eq. (9),
one can find the far-zone scattered spectral density of the
light wave on the scatter from a collection of particles,
which takes the form of

S ðsÞðrs; s0;ωÞ ¼
A2S ðiÞðωÞð2πÞ3σ6

r2

× expð−σ2K2Þ
X
n

expðiK·r0nÞ

×
X
n

expð−iK·r0nÞ: (13)

As shown in Eq. (13), both the number of particles (i.e.,
n) and their locations in the collection (i.e., r01; r

0
2;…r

0
n)

play roles in the far-zone scattered spectral density. In
the following, some numerical results will be presented
to illustrate the influence of the number of particles and
their locations in the collection on the distribution of
the far-zone scattered spectral density.

First of all, let us consider the influence of the locations
of the particles in the collection on the distribution of the
far-zone scattered spectral density. For the sake of simplic-
ity, let us consider a two-particle collection with different
intervals (see Fig. 1). In Fig. 2, the influence of the scat-
tered spectral density of the light wave on scattering from
a two-particle collection corresponding to Fig. 1 is pre-
sented. Due to the fact that the incident wave is along
the z-th direction and the particles in the collection are
located in the y-th direction (see Fig. 1), we present the
distribution of the scattered spectral density in the y–z
plane. As shown in Fig. 2(a), when the interval between
the two particles is small, by increasing the scattering
angle (i.e., the angle made by s and s0), the spectral
density decreases, and no secondary maximum appears.
However, with the increase of the interval between the
two particles, a series of secondary maxima appears in

Fig. 1. Two-particle collection with different intervals.
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the far-zone spectral density. Moreover, it is shown from
Fig. 2(b–d) that the scattering angle at which the first
minimum value appears decreased with the increase of
the interval of the two particles. For an intuitive illustra-
tion of above phenomenon, we compiled the distance of
the two particles and the scattering angle at which the
first minimum and the secondary maximum appeared
in the scattered spectral density in Table 1.
Now let us consider the influence of the number of par-

ticles on the far-zone scattered spectral density. Assume
that all of the particles in the collection are equidistant
(see Fig. 3). In Fig. 4, the far-zone scattered spectral den-
sity of the light wave on the scattering from a collection
with a different number of particles corresponding to Fig. 3
is presented. As shown in Fig. 4(a), for a one-particle
collection, the distribution of the spectral density is a
Gaussian function, and the spectral density decreased
with the increase of the scattering angle. However, for a
multi-particle collection, with an increase in the scattering
angle, a series of secondary maxima can be found in the
scattered spectral density. Moreover, it is shown that
the number of the minimum values between two main
maximum values in the distribution of the scattered

spectral density is closely related to the number of par-
ticles in the collection.

Finally, let us discuss the potential application of
the above phenomenon, i.e., the reconstruction of the
character of a collection, including the number of particles
and their locations in the collection from the measure-
ments of the far-zone scattered spectral density. As shown
in Fig. 2, the interval of a two-particle collection is closely
related to the direction in which the first minimum ap-
pears in the far-zone scattered spectral density. In other
words, one can determine the interval of a two-particle col-
lection from the measurement of the direction in which the
first minimum appears in the far-zone scattered spectral
density. As shown in Fig. 4, the distribution of the far-zone
scattered spectral density is influenced by the number of
particles in the collection. This can be further concluded as
follows: the number of particles in a collection can be
determined from the measurement of the number of the
minimum values that appear between the two main maxi-
mum values in the far-zone scattered spectral density.

It should be noted that the above discussion is based on
a collection of identical spherical particles. This method
can be generalized to a collection of spherical particles
with different sizes, i.e., particles with different effective

Fig. 3. Particle collection with different numbers of particles.

Fig. 4. The normalized scattered spectral density of a light wave
on the scattering from collection with different numbers of
particles corresponding to Fig. 3. The parameters for the
calculations are as follows: λ ¼ 0.6283 μm, k ¼ 2π∕λ, kσ ¼ 5,
and d ¼ 4λ.

Fig. 2. The normalized scattered spectral density of a light wave
on the scattering from a two-particle collection with different
intervals corresponding to Fig. 1. The parameters for the calcu-
lations are as follows: λ ¼ 0.6283 μm, k ¼ 2π∕λ, kσ ¼ 10, and
d ¼ 2λ.

Table 1. Relationship between the Distance of Two
Particles and the Scattering Angle at which the First
Minimum and the Second Maximum appeared in the
Scattered Spectral Density

Distance between Two Particles

2λ 4λ 6λ 8λ 10λ 12λ

θmin1 0.186 0.125 0.083 0.063 0.05 0.042

θmin2 – 0.175 0.134 0.109 0.091 0.078
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widths of their scattering potentials. For a more complex
case, i.e., a collection of particles with non-spherical
particles, the scattered field should be discussed with
the help of a tensor integral, and the density of the scat-
tered field is then anisotropic[21]. In this case, one needs
more information about the scattered field to find the
structure information of the collection.
In conclusion, we discuss the far-zone spectral density of

a light wave on the scattering from a collection of identical
isotropic particles with different distributions. It is shown
that the far-zone scattered spectral density is closely
related to the location and the number of the particles
in the collection. This phenomenon may provide a simple
and effective method for the determination of the struc-
ture of a collection of identical isotropic particles.
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